Structure of the antiviral assembly inhibitor CAP-1 complex with the HIV-1 CA protein.
نویسندگان
چکیده
The CA domain of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein plays critical roles in both the early and late phases of viral replication and is therefore an attractive antiviral target. Compounds with antiviral activity were recently identified that bind to the N-terminal domain of CA (CA N) and inhibit capsid assembly during viral maturation. We have determined the structure of the complex between CA N and the antiviral assembly inhibitor N-(3-chloro-4-methylphenyl)-N'-{2-[({5-[(dimethylamino)-methyl]-2-furyl}-methyl)-sulfanyl]ethyl}-urea) (CAP-1) using a combination of NMR spectroscopy and X-ray crystallography. The protein undergoes a remarkable conformational change upon CAP-1 binding, in which Phe32 is displaced from its buried position in the protein core to open a deep hydrophobic cavity that serves as the ligand binding site. The aromatic ring of CAP-1 inserts into the cavity, with the urea NH groups forming hydrogen bonds with the backbone oxygen of Val59 and the dimethylamonium group interacting with the side-chains of Glu28 and Glu29. Elements that could be exploited to improve binding affinity are apparent in the structure. The displacement of Phe32 by CAP-1 appears to be facilitated by a strained main-chain conformation, which suggests a potential role for a Phe32 conformational switch during normal capsid assembly.
منابع مشابه
HIV-1 Gag Blocks Selenite-Induced Stress Granule Assembly by Altering the mRNA Cap-Binding Complex
UNLABELLED Stress granules (SGs) are dynamic accumulations of stalled preinitiation complexes and translational machinery that assemble under stressful conditions. Sodium selenite (Se) induces the assembly of noncanonical type II SGs that differ in morphology, composition, and mechanism of assembly from canonical SGs. Se inhibits translation initiation by altering the cap-binding activity of eu...
متن کاملSynthesis of HIV-1 capsid protein assembly inhibitor (CAP-1) and its analogues based on a biomass approach.
A biomass-derived platform chemical was utilized to access a demanded pharmaceutical substance with anti-HIV activity (HIV, human immunodeficiency virus) and a variety of structural analogues. Step economy in the synthesis of the drug core (single stage from cellulose) is studied including flexible variability of four structural units. The first synthesis and X-ray structure of the inhibitor of...
متن کاملRationally Designed Interfacial Peptides Are Efficient In Vitro Inhibitors of HIV-1 Capsid Assembly with Antiviral Activity
Virus capsid assembly constitutes an attractive target for the development of antiviral therapies; a few experimental inhibitors of this process for HIV-1 and other viruses have been identified by screening compounds or by selection from chemical libraries. As a different, novel approach we have undertaken the rational design of peptides that could act as competitive assembly inhibitors by mimi...
متن کاملEffect of macromolecular crowding agents on human immunodeficiency virus type 1 capsid protein assembly in vitro.
Previous studies on the self-assembly of capsid protein CA of human immunodeficiency virus type 1 (HIV-1) in vitro have provided important insights on the structure and assembly of the mature HIV-1 capsid. However, CA polymerization in vitro was previously observed to occur only at very high ionic strength. Here, we have analyzed the effects on CA assembly in vitro of adding unrelated, inert ma...
متن کاملThe correlations between chemical structure properties and antiviral activities of HIV-1 inhibitors: The study of anti-AIDS
In this work, we calculated the several physico chemical properties containing of solubility (byVCL), lipophilicity (by milinspiration), dipole and quadrupole moments (by Density FunctionalTheory) for 7 AZT analogs, and compared these parameters with inhibition assays of them. It isresulted; cytotoxicity of these drugs is related with their lipophilicity inversely. With using of thisresult, for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 373 2 شماره
صفحات -
تاریخ انتشار 2007